×

binary array造句

"binary array"是什么意思   

例句与造句

  1. Existence of generalized perfect binary arrays
    广义最佳二进阵列的存在性
  2. Method before marshaling the acl into a binary array
    方法,以便将acl封送到二进制数组中。
  3. An element contains a name , a namespace , a mime type , and a binary array of data
    元素包含了名称、名称空间、 mime类型和二进制数据数组。
  4. Object . this length should be used before marshaling the acl into a binary array with the
    在使用getbinaryform方法将acl封送到二进制数组中之前,应使用该长度。
  5. Object . this length should be used before marshaling the access control list into a binary array by using the
    应该在使用getbinaryform方法将访问控制列表封送到二进制数组中之前使用此长度。
  6. It's difficult to find binary array in a sentence. 用binary array造句挺难的
  7. The conception " almost perfect arrays " is proposed and it is shown that the existence of an almost perfect binary array is equivalent to the existence of a certain divisible difference set
    提出了几乎完美阵列的概念,证明了完美二元阵列的存在性等价于一种特定的可分差集的存在性。
  8. The method in this paper provides a new approach to search perfect binary array pairs and quasi - perfect binary array pairs of big volume . it also can be used in the fast searching program for the sequences and arrays of other forms
    本文提出的方法为寻找大体积的最佳二进阵列偶和准最佳二进阵列偶提供了一种新的途径,此方法还可以应用到对其它形式的序列或阵列的快速搜索程序中。
  9. It is of important academic value and practical meaning to study perfect signal . this paper aims at a new form signal - array pair , the theory of array pairs , perfect binary pairs and quasi - perfect binary array pairs is discussed synthetically
    因此对最佳信号理论进行研究有重要的理论价值和实际意义。本文针对一种新的信号形式一阵列偶,对阵列偶、最佳二进阵列偶以及准最佳二进阵列偶理论进行了综合探讨。
  10. A composite method for constructing perfect binary array pairs of high - dimension and high - order with known perfect binary array pairs is proposed and verified . the type of perfect binary array pairs constructed with constant weight perfect binary array pairs is discussed . the method can be used to construct infinite perfect binary array pairs
    提出并证明了用已知最佳二进阵列偶构造高维、高阶最佳二进阵列偶的复合构造法;讨论了用等重最佳二进阵列偶复合构造新的高维、高阶最佳二进阵列偶时,所得到的最佳二进阵列偶的型的变化结果.使用这种方法可构造无穷多最佳二进阵列偶
  11. Compared with exhausitive search algorithm , the search amout is remarkable reduced by this algorithm and the algorithm is very efficiency . with the searched perfect binary array pairs and quasi - perfect binary array pairs , new perfect binary array pairs of high dimension and volume can be constructed by all kinds of construct methods
    通过与穷举搜索算法的比较,本算法大大减少了搜索数量,具有较高的效率。利用搜索得到的最佳二进阵列偶和准最佳二进阵列偶,可以用各种构造方法构造出新的高维和高阶的最佳二进阵列偶。
  12. When calculate the correlation function of binary array pairs , using the boolean calculation instead of the decimal multiplication , using the method of count the number of 1 in binary integer to calculate the correlation function of binary array pairs , the speed of searching is obviously improved by these methods . by the algorithm introduced in this paper , the constant weight and normative perfect binary array pairs whose volume from 4 to 28 and quasi - perfect binary array pairs whose volume from 2 to 24 were searched and gi ved the new result
    此外,采用二进制整数来表示阵列,通过对整数的逻辑运算来实现阵列偶的移位变换、完全采样变换等运算;在计算二进阵列偶的相关函数时,用整数的逻辑运算代替十进制中的乘法运算,并用计算二进制整数中1的个数的方法来计算二进阵列偶的相关函数,以上方法的采用明显地提高了搜索速度。利用上述算法,对体积为4 28的等重规范型最佳二进阵列偶和体积为2 24的准最佳二进阵列偶进行了搜索,并给出了新的结果。
  13. Based on this theory , a new searching algorithm is designed . in order to realize fast searching , the algorithm makes full use of the transform properties and necessary conditions of the perfect binary array pairs and quasi - perfect binary array pairs , exclude the array pairs of transform equivalence , so that reduced the searching space and amount , and improved the searching speed
    为了实现快速搜索,本算法充分利用最佳二进阵列偶、准最佳二进阵列偶的变换性质和存在的必要条件,排除变换等价的阵列偶,从而缩减了搜索空间,减少了搜索数量,以达到提高搜索速度的目的。

相邻词汇

  1. "binary antonyms"造句
  2. "binary arithmetic"造句
  3. "binary arithmetic operation"造句
  4. "binary arithmetic operations"造句
  5. "binary arithmetic operators"造句
  6. "binary arts"造句
  7. "binary ascii"造句
  8. "binary association"造句
  9. "binary asteroid"造句
  10. "binary asteroids"造句
桌面版繁體版English日本語

Copyright © 2025 WordTech Co.

Last modified time:Sun, 10 Aug 2025 00:29:56 GMT